(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
plus(n, s(m)) →+ s(plus(n, m))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [m / s(m)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0') → n
plus(n, s(m)) → s(plus(n, m))
gt(0', v) → false
gt(s(u), 0') → true
gt(s(u), s(v)) → gt(u, v)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0') → n
plus(n, s(m)) → s(plus(n, m))
gt(0', v) → false
gt(s(u), 0') → true
gt(s(u), s(v)) → gt(u, v)
Types:
f :: true:false → s:0' → s:0' → s:0' → f
true :: true:false
gt :: s:0' → s:0' → true:false
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f1_0 :: f
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
gt,
plusThey will be analysed ascendingly in the following order:
gt < f
plus < f
(8) Obligation:
TRS:
Rules:
f(
true,
x,
y,
z) →
f(
gt(
x,
plus(
y,
z)),
x,
s(
y),
z)
f(
true,
x,
y,
z) →
f(
gt(
x,
plus(
y,
z)),
x,
y,
s(
z))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
f :: true:false → s:0' → s:0' → s:0' → f
true :: true:false
gt :: s:0' → s:0' → true:false
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f1_0 :: f
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
gt, f, plus
They will be analysed ascendingly in the following order:
gt < f
plus < f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
gt(
gen_s:0'4_0(
n6_0),
gen_s:0'4_0(
n6_0)) →
false, rt ∈ Ω(1 + n6
0)
Induction Base:
gt(gen_s:0'4_0(0), gen_s:0'4_0(0)) →RΩ(1)
false
Induction Step:
gt(gen_s:0'4_0(+(n6_0, 1)), gen_s:0'4_0(+(n6_0, 1))) →RΩ(1)
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
true,
x,
y,
z) →
f(
gt(
x,
plus(
y,
z)),
x,
s(
y),
z)
f(
true,
x,
y,
z) →
f(
gt(
x,
plus(
y,
z)),
x,
y,
s(
z))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
f :: true:false → s:0' → s:0' → s:0' → f
true :: true:false
gt :: s:0' → s:0' → true:false
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f1_0 :: f
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
plus, f
They will be analysed ascendingly in the following order:
plus < f
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_s:0'4_0(
a),
gen_s:0'4_0(
n259_0)) →
gen_s:0'4_0(
+(
n259_0,
a)), rt ∈ Ω(1 + n259
0)
Induction Base:
plus(gen_s:0'4_0(a), gen_s:0'4_0(0)) →RΩ(1)
gen_s:0'4_0(a)
Induction Step:
plus(gen_s:0'4_0(a), gen_s:0'4_0(+(n259_0, 1))) →RΩ(1)
s(plus(gen_s:0'4_0(a), gen_s:0'4_0(n259_0))) →IH
s(gen_s:0'4_0(+(a, c260_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
f(
true,
x,
y,
z) →
f(
gt(
x,
plus(
y,
z)),
x,
s(
y),
z)
f(
true,
x,
y,
z) →
f(
gt(
x,
plus(
y,
z)),
x,
y,
s(
z))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
f :: true:false → s:0' → s:0' → s:0' → f
true :: true:false
gt :: s:0' → s:0' → true:false
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f1_0 :: f
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
plus(gen_s:0'4_0(a), gen_s:0'4_0(n259_0)) → gen_s:0'4_0(+(n259_0, a)), rt ∈ Ω(1 + n2590)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
f
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(16) Obligation:
TRS:
Rules:
f(
true,
x,
y,
z) →
f(
gt(
x,
plus(
y,
z)),
x,
s(
y),
z)
f(
true,
x,
y,
z) →
f(
gt(
x,
plus(
y,
z)),
x,
y,
s(
z))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
f :: true:false → s:0' → s:0' → s:0' → f
true :: true:false
gt :: s:0' → s:0' → true:false
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f1_0 :: f
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
plus(gen_s:0'4_0(a), gen_s:0'4_0(n259_0)) → gen_s:0'4_0(+(n259_0, a)), rt ∈ Ω(1 + n2590)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(18) BOUNDS(n^1, INF)
(19) Obligation:
TRS:
Rules:
f(
true,
x,
y,
z) →
f(
gt(
x,
plus(
y,
z)),
x,
s(
y),
z)
f(
true,
x,
y,
z) →
f(
gt(
x,
plus(
y,
z)),
x,
y,
s(
z))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
f :: true:false → s:0' → s:0' → s:0' → f
true :: true:false
gt :: s:0' → s:0' → true:false
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f1_0 :: f
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
plus(gen_s:0'4_0(a), gen_s:0'4_0(n259_0)) → gen_s:0'4_0(+(n259_0, a)), rt ∈ Ω(1 + n2590)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
f(
true,
x,
y,
z) →
f(
gt(
x,
plus(
y,
z)),
x,
s(
y),
z)
f(
true,
x,
y,
z) →
f(
gt(
x,
plus(
y,
z)),
x,
y,
s(
z))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
f :: true:false → s:0' → s:0' → s:0' → f
true :: true:false
gt :: s:0' → s:0' → true:false
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f1_0 :: f
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(24) BOUNDS(n^1, INF)